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Summary

The classical Kirchhoff migration method assumes an
asymptotic  ray theory form of the Green’s function.
To be consistent with ray theory assumptions, the ray
slowness model that produces this function must be a
smooth version of the true slowness model.  However,
the implied wavefield extrapolation through the
smooth model introduces diffraction errors.  These
diffraction errors are predicted via a first order Born
approximation that includes a surface and volume
integral term.  The surface integral represents the
wavefield extrapolation through the smooth slowness
model and the volume integral is the slowness
perturbation contribution to the wavefield propagator.

Introduction

Kirchhoff migration methods are the most
computationally efficient procedures for imaging 3-D
wavefield data.  For general slowness models, the
migration wavefield propagation operators, Green’s
functions, are usually obtained by ray methods.  For
example, Gray and May, 1994, discuss a finite
difference eikonal approach.  However certain
imaging errors occur due to single ray path
assumptions (see Fei, et al, 1995).  These errors
include incomplete focusing (first arrival time events
do not represent the dominant amplitude events) and
erroneous focusing (difficulty of predicting ray
amplitudes at caustics).

Ruhl (1996) presented a derivation of the one-way
wave equation starting from a wavenumber domain
formulation of the Kirchhoff-Born equation.
Relationships to the split-step method were also
shown.  This implies the Kirchhoff-Born equation
models high order wave equation phenomena.

In this paper, an integral formulation of the Kirchhoff-
Born equation is presented.  This equation predicts a
diffraction term that is missing in the ray-based
Kirchhoff imaging procedure that is significant for
large lateral slowness perturbations. We derive this
diffraction term in the context of a Kirchhoff migration
integral and propose a method for calculating this
term.

Born and Kirchhoff integral

The constant density acoustic wave equation is

∇ 2 P[x,ω] + ω2 s2 P[x, ω] = 0 [1]

where P is the pressure wavefield, ω is the angular
frequency, s is the slowness, and x is the spatial
location of the wavefield.  To obtain the Born
approximation, we introduce the slowness
perturbation, ∆s[x],

s[x] = so[x] + ∆s[x] [2]

about the reference slowness, so[x], which is
assumed to be a  sufficiently smoothly varying
slowness function that it can be used to calculate ray
travel times.
Equation [1] can be written as

∇ 2 P[x,ω] + ω2 so
2 P[x, ω] =

 -2ω2 so ∆s [1 + ∆s/ 2so] P[x, ω] [3]

Using the Green’s function, Go, for the ray reference
slowness model, the solution to equation [3] in
integral form, is

P[x’,ω] = ∫ dΓ n•{ ∇ Go[x,x’] P[x,ω]-Go[x,x’] ∇ P[x,ω] }+
+  2ω2 ∫ dx’’ Go[x’’,x’] e[x’’] P[x’’,ω]

[4]

where P[x’,ω] is the interior pressure wavefield,  Γ is
the bounding surface with x’ and x’’ as interior points,
n is the surface normal vector, Go satisfies

∇ 2 Go[x,x’] + ω2 so
2 Go[x,x’] = δ[x - x’] [5]

and the Green’s function is calculated using
asymptotic ray theory to solve the eikonal and
transport equations, i.e.

Go[x,x’] ≈ A[x,x’] exp[ iω t[x,x’] ]
where t[x,x’] satisfies the eikonal equation

∇  t • ∇ t = so
2
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and the amplitude term, A[x,x’], satisfies the
transport equation

2 ∇ t • ∇ A + A ∇ 2 t = 0 .
 e[x] is the virtual volume source term

e[x] = so ∆s [1 + ∆s/ 2so] . [6]

Note here that Go does not designate the analytic
Green’s function for the constant slowness case, but
for a Green’s function determined from a slowness
model that is consistent with ray theory.

The surface integral term in equation [4] represents
the contribution to the wavefield at x’ via extrapolation
through the reference slowness model. To compute
the ray path using ray theory, the Courant-Friedrichs-
Lewy condition requires that |∇ s/s| δλ <1, where δλ is
the incremental ray path length.  The correction term
is the volume integral which represents a
superposition of secondary sources that are excited
by the incident wavefield P when it encounters the
slowness perturbations e[x], The secondary sources
are propagated by Go to x’.  The first order Born
approximation used to derive [3] assumes

1. small magnitude perturbations, | ∆s/so | < 1, and
2. the incident wavefield is the extrapolated

wavefield given by

P[x,ω] = ∫ dΓ n’• {∇ Go[x,x’] P[x’,ω]-Go[x,x’] ∇ P[x’,ω]}.

Assume Go is the Dirichlet Green’s function, Gdo, that
is zero on the boundary; under these assumptions
equation [4] is approximated as

P[x’,ω] ≈ ∫ dΓ n• ∇ Gdo[x,x’] P[x,ω] +
+ 2ω2 ∫ dx’’ Gdo[x’’,x’] e[x’’] •
•∫ dΓ n• ∇ Gdo[x,x’’] P[x,ω]

Interchanging the volume and surface integrals, we
have

P[x’,ω] ≈ ∫ dΓ P[x,ω] { n• ∇ Gdo[x,x’]  +
+  2ω2 ∫ dx’’ n• ∇ Gdo[x,x’’] e[x’’] Gdo[x’’,x’] }.

[7]

The volume scattering integral is an effective
wavefield propagation operator that includes the
higher order diffraction terms that were neglected in
the high frequency asymptotic calculation of Gdo.

This term is significant for large slowness
perturbations and yields a coda that extends the
wavefield propagator in time.  To obtain a zero-offset
migration expression from equation [7], integrate the
interior wavefield, P[x’,ω], with respect to frequency
to invoke the imaging condition.

If we assume that the virtual source term e[x] has
bounded support, e.g. it is non-zero only at large
discontinuities such as the boundary of a  salt body ,
then the S-matrix approach from quantum mechanics
(see Merzbacher, 1997)  is a computationally
attractive method for evaluating the volume integral.
The S or scattering matrix gives the amplitude and
phase for plane wave to plane wave scattering from a
scattering potential e[x’’].  The volume integral is

V = 2ω2 ∫ dx’’ n• ∇ Gdo[x,x’’] e[x’’] Gdo[x’’,x’] [8]

and substituting the ray form of Gdo and neglecting the
gradient of the amplitude which is a near field term,
one obtains

V = 2iω3 n•p[x] ∫ dx’’ A[x,x’’] A[x’’,x’] •
•exp[ iω {t[x,x’’] + t[x’’,x’]} ] e[x’’] [9]

where A[x,x’’] is the ray amplitude from x to x’’, t[x,x’’]
is the corresponding ray travel time, and p[x] is the
ray slowness vector.  Assuming e[x’’] has bounded
support; let q designate a reference point for the
source volume.  To evaluate the volume integral,
equation 9, we use the stationary phase method (see
Bleistein and Handelsman, 1975).

V = 2iω3/2 n•p[x] A[x,q] A[q,x’]·•
• exp[ iω {t[x,q,x’] + i π /4 sgn{ t[x,q,x’],xx } ]
 •E[ks] /  det[ t[x,q,x’],xx ] [10]

where t[x,q,x’] = t[x,q] + t[q,x’], E[ks] is the spatial
Fourier transform of e[x’’], ks is the scattering
wavenumber vector,

ks = ω p[x,q] + ω p[q,x’],

 p[x,q] is the entrance slowness vector and the prime
designates the exit slowness vector.  The
expression, t[x,q,x’],xx , is the time wavefront
curvature at point q.

By evaluating V and adding it to the integrand of
equation [7], we have included the first-order
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diffraction term to the Kirchhoff migration approach. V
can be calculated  independently of the surface
integral so that one can investigate when and where
the diffraction corrections need to be included in the
migration.

Conclusions

A Kirchhoff-Born equation was developed to describe
surface wavefield extrapolation via asymptotic ray
theory Green’s functions.  It was shown that due to
the assumptions required for the slowness model
used in ray tracing, a high frequency diffraction term
was neglected.  This diffraction term comes from a
volume scattering that is the difference of the true
slowness model and the ray slowness model.
Accompanying this derivation of the Kirchhoff-Born
equation was a scattering matrix-Fourier transform
method to compute this diffraction term.
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